1. Monthly payment for each loan:

- For 15-years loan

$$
\text { Follow } A_{n}=R \frac{1-(1+i)^{-n}}{i} \Leftrightarrow R=\frac{i A_{n}}{1-(1+i)^{-n}}=\frac{\frac{0.0625}{12} \times \$ 150,000}{1-\left(1+\frac{0.0625}{12}\right)^{-180}}=\$ 1,286.13
$$

- For 30-years loan

Follow $A_{n}=R \frac{1-(1+i)^{-n}}{i} \Leftrightarrow R=\frac{i A_{n}}{1-(1+i)^{-n}}=\frac{\frac{0.0675}{12} \times \$ 150,000}{1-\left(1+\frac{0.0675}{12}\right)^{-360}}=\$ 972.90$
So if you choose a 15 -years loan, your monthly payment is $\$ 1286.13$ and a 30 -year loan, your monthly payment is $\$ 972.90$.
2. Construct amortization loan of four annual:

Follow $A_{n}=R \frac{1-(1+i)^{-n}}{i} \Leftrightarrow R=\frac{i A_{n}}{1-(1+i)^{-n}}=\frac{0.06 \times \$ 25,000}{1-(1+0.06)^{-4}}=7,214.79$

Number of Payment	Unpaid Balance	Interest Paid	Equally monthly Payment	Payment without Interest			
1	$\$$	$25,000.00$	$\$ 1,500.00$	$\$$	$7,214.79$	$\$$	$5,714.79$
2	$\$$	$19,285.21$	$\$ 1,157.11$	$\$$	$7,214.79$	$\$$	$6,057.68$
3	$\$$	$13,227.53$	$\$$	793.65	$\$$	$7,214.79$	$\$$
4	$\$$	$6,806.39$	$\$$	408.38	$\$$	$7,214.79$	$\$$
	Total					$\$ 3,859.15$	$\$$

3. Amount owe after 26 month:

Follow: $A_{n(d e f)}=A_{n}(1+i)^{-d}=R\left[\frac{1-(1+i)^{-n}}{i}\right](1+i)^{-d}$
$\Leftrightarrow R=\frac{i A_{n}(1+i)^{d}}{1-(1+i)^{-n}}=\frac{\frac{0.18}{12} \times 29,000 \times\left(1+\frac{0.18}{12}\right)^{1}}{1-\left(1+\frac{0.18}{12}\right)^{-60}}=\$ 747.46$
Because of the payment beginning one month from today, so the amount after 26 month is as the same as after $25^{\text {th }}$ payment. The amount after 26 month is $\$ 26,590.34$, which calculated by:

$$
\begin{aligned}
S & =\$ 29,000(1+0.015)^{25}=\$ 42,077.42 \\
S_{25} & =\$ 747.46\left(\frac{1-1.015^{-25}}{0.015}\right)=\$ 15,487.08
\end{aligned}
$$

4. Calculate for number of years which you can get require amount:

Follow: $S=P(1+i)^{n} \Leftrightarrow \$ 94,000=\$ 14,000(1+0.03)^{n} \Rightarrow 1.03^{n}=6.71$

$$
\begin{aligned}
& \Rightarrow n=\log _{1.03} 6.71=142.32=64.42 \\
& \Rightarrow n=64.42 \text { years }
\end{aligned}
$$

5. Calculate for interest you must earn in order to get require amount:

Follow : $S=P(1+i)^{n} \Leftrightarrow \$ 78,000=\$ 10,000(1+i)^{4} \Rightarrow 7.8=(1+i)^{4}$

$$
\begin{aligned}
& \Rightarrow i=1.67-1=0.6712 \\
& \Rightarrow i=67.12 \%
\end{aligned}
$$

6. Money that Mr. Samrach has:
i. At 1 December, 2007

Follow: $S_{n}=R \frac{(1+i)^{n}-1}{i}=\$ 10,000 \frac{(1+0.10)^{15}-1}{0.10}=\$ 317,724.82$
ii. At 1 December, 2008

Follow: $S=P(1+i)^{n}=\$ 317,724.82(1+0.10)^{1}=\$ 349,497.30$
iii. At 1 December, 2009

Follow: $S=P(1+i)^{n}=\$ 317,724.82(1+0.10)^{5}=\$ 511,699$
7. Determine the number of payments:

$$
\text { Follow } \begin{aligned}
& A_{n}= R\left[\frac{1-(1+i)^{-n}}{i}\right] \Leftrightarrow 1,000=325\left[\frac{1-(1+0.25)^{-n}}{0.25}\right] \\
& \frac{1,000 \times 0.25}{325}=1-1.25^{-n} \\
& 0.77=1-1.25^{-n} \Leftrightarrow 1.25^{-n}=1-0.77=0.23 \\
& \Rightarrow-n=\log _{1.25} 0.23 \Leftrightarrow n=6.59 \approx 7 \text { years }
\end{aligned}
$$

 โู่องบ
8. Compute for:
i. Yearly Payment (R):

$$
\begin{aligned}
& \text { Follow }: A_{n}=R\left[\frac{1-(1+i)^{-n}}{i}\right] \\
& \quad \Leftrightarrow R=\frac{i A_{n}}{1-(1+i)^{-n}}=\frac{0.10 \times 1,000,000}{1-(1+0.10)^{-3}}=\$ 402,114.80
\end{aligned}
$$

ii. Table of Amortization:

Number of Payment	Unpaid Balance	Interest Paid	Equally monthly Payment		Payment without Interest	
1	\$ 1,000,000.00	\$ 100,000.00	\$	402,114.80	\$	302,114.80
2	\$ 697,885.20	\$ 69,788.52	\$	402,114.80	\$	332,326.28
3	\$ 365,558.92	\$ 36,555.89	\$	402,114.80	\$	365,558.91
	Total	\$ 206,344.41	\$	1,206,344.40	\$	999,999.99

9. Compute for:
i. Principle:

$$
\begin{aligned}
& S_{1}=P_{1}(1+i)^{n_{1}} \Rightarrow P_{1}=\frac{S_{1}}{(1+i)^{n}}=\frac{100,000,000}{(1+0.12)^{1}}=89,285,714.29 R \\
& S_{2}=P_{2}(1+i)^{n_{1}} \Rightarrow P_{2}=\frac{S_{2}}{(1+i)^{n_{2}}}=\frac{125,000,000}{(1+0.12)^{2}}=99,649,234.69 \mathrm{R} \\
& S_{3}=P_{3}(1+i)^{n_{1}} \Rightarrow P_{3}=\frac{S_{3}}{(1+i)^{n_{3}}}=\frac{150,000,000}{(1+0.12)^{3}}=106,767,037.20 \mathrm{R}
\end{aligned}
$$

ii. Total: $100,000,000+125,000,000+150,000,000=375,000,000 R$

