- 1. Monthly payment for each loan:
 - For 15-years loan

Follow
$$A_n = R \frac{1 - (1 + i)^{-n}}{i} \Leftrightarrow R = \frac{iA_n}{1 - (1 + i)^{-n}} = \frac{\frac{0.0625}{12} \times \$150,000}{1 - (1 + \frac{0.0625}{12})^{-180}} = \$1,286.13$$

- For 30-years loan

Follow
$$A_n = R \frac{1 - (1 + i)^{-n}}{i} \Leftrightarrow R = \frac{iA_n}{1 - (1 + i)^{-n}} = \frac{\frac{0.0675}{12} \times \$150,000}{1 - (1 + \frac{0.0675}{12})^{-360}} = \$972.90$$

So if you choose a 15-years loan, your monthly payment is \$1286.13 and a 30-year loan, your monthly payment is \$972.90.

2. Construct amortization loan of four annual:

Follow
$$A_n = R \frac{1 - (1 + i)^{-n}}{i} \Leftrightarrow R = \frac{iA_n}{1 - (1 + i)^{-n}} = \frac{0.06 \times \$25,000}{1 - (1 + 0.06)^{-4}} = 7,214.79$$

Number of Payment	Unpaid Balance	Interest Paid	Equally monthly Payment	Payment without Interest
1	\$ 25,000.00	\$ 1,500.00	\$ 7,214.79	\$ 5,714.79
2	\$ 19,285.21	\$ 1,157.11	\$ 7,214.79	\$ 6,057.68
3	\$ 13,227.53	\$ 793.65	\$ 7,214.79	\$ 6,421.14
4	\$ 6,806.39	\$ 408.38	\$ 7,214.79	\$ 6,806.41
	Total	\$ 3,859.15	\$ 28,859.16	\$ 25,000.01

3. Amount owe after 26 month:

Follow:
$$A_{n(def)} = A_n (1+i)^{-d} = R \left[\frac{1-(1+i)^{-n}}{i} \right] (1+i)^{-d}$$

 $\Leftrightarrow R = \frac{iA_n (1+i)^d}{1-(1+i)^{-n}} = \frac{\frac{0.18}{12} \times 29,000 \times \left(1+\frac{0.18}{12}\right)^1}{1-\left(1+\frac{0.18}{12}\right)^{-60}} = \747.46

Because of the payment beginning one month from today, so the amount after 26 month is as the same as after 25^{th} payment. The amount after 26 month is \$26,590.34, which calculated by:

$$S = $29,000(1+0.015)^{25} = $42,077.42$$

$$S_{25} = \$747.46 \left(\frac{1 - 1.015^{-25}}{0.015}\right) = \$15,487.08$$

4. Calculate for number of years which you can get require amount:

Follow:
$$S = P(1+i)^n \Leftrightarrow \$94,000 = \$14,000(1+0.03)^n \Longrightarrow 1.03^n = 6.71$$

$$\Rightarrow n = \log_{1.03} 6.71 = 142.32 = 64.42$$

$$\Rightarrow$$
 n = 64.42 years

5. Calculate for interest you must earn in order to get require amount:

Follow:
$$S = P(1+i)^n \Leftrightarrow \$78,000 = \$10,000(1+i)^4 \Longrightarrow 7.8 = (1+i)^4$$

 $\Rightarrow i = 1.67 - 1 = 0.6712$
 $\Rightarrow i = 67.12\%$

6. Money that Mr. Samrach has:

i. At 1 December, 2007

Follow: $S_n = R \frac{(1+i)^n - 1}{i} = \$10,000 \frac{(1+0.10)^{15} - 1}{0.10} = \$317,724.82$ ii. At 1 December, 2008 Follow: $S = P(1+i)^n = \$317,724.82(1+0.10)^1 = \$349,497.30$ iii. At 1 December, 2009 Follow: $S = P(1+i)^n = \$317,724.82(1+0.10)^5 = \$511,699$ Determine the number of payments:

Follow:
$$A_n = R\left[\frac{1-(1+i)^{-n}}{i}\right] \Leftrightarrow 1,000 = 325\left[\frac{1-(1+0.25)^{-n}}{0.25}\right]$$

 $\frac{1,000 \times 0.25}{325} = 1-1.25^{-n}$
 $0.77 = 1-1.25^{-n} \Leftrightarrow 1.25^{-n} = 1-0.77 = 0.23$
 $\Rightarrow -n = \log_{1.25} 0.23 \Leftrightarrow n = 6.59 \approx 7 \text{ years}$

នៅក្នុងករណីនេះ យើងឃើញថាគេត្រូវសងប្រាក់ត្រលប់ទៅវិញចំនួន ៧ ដែល ៦ ដងមានចំនួន ៣២៥ លានរៀលស្មើៗគ្នា ហើយនៅលើកចុងក្រោយគឺលើកទី ៧ គេត្រូវសងប្រាក់ត្រលប់ទៅវិញចំនួន ១៩០.៥២ លាន រៀល។

8. Compute for:

7.

i. Yearly Payment (R):

Follow:
$$A_n = R\left[\frac{1-(1+i)^{-n}}{i}\right]$$

 $\Leftrightarrow R = \frac{iA_n}{1-(1+i)^{-n}} = \frac{0.10 \times 1,000,000}{1-(1+0.10)^{-3}} = $402,114.80$

ii. Table of Amortization:

Number of Payment	Unpaid Balance	Interest Paid	Equally monthly Payment	Payment without Interest
1	\$ 1,000,000.00	\$100,000.00	\$ 402,114.80	\$ 302,114.80
2	\$ 697,885.20	\$ 69,788.52	\$ 402,114.80	\$ 332,326.28
3	\$ 365,558.92	\$ 36,555.89	\$ 402,114.80	\$ 365,558.91
	Total	\$206,344.41	\$ 1,206,344.40	\$ 999,999.99

9. Compute for:

i. Principle:

$$S_{1} = P_{1} (1+i)^{n_{1}} \Longrightarrow P_{1} = \frac{S_{1}}{(1+i)^{n}} = \frac{100,000,000}{(1+0.12)^{1}} = 89,285,714.29R$$

$$S_{2} = P_{2} (1+i)^{n_{1}} \Longrightarrow P_{2} = \frac{S_{2}}{(1+i)^{n_{2}}} = \frac{125,000,000}{(1+0.12)^{2}} = 99,649,234.69R$$

$$S_{3} = P_{3} (1+i)^{n_{1}} \Longrightarrow P_{3} = \frac{S_{3}}{(1+i)^{n_{3}}} = \frac{150,000,000}{(1+0.12)^{3}} = 106,767,037.20R$$
ii. Total: 100,000,000+125,000,000+150,000,000 = 375,000,000R